Welcome to our CHEM 4 lecture

Review clicker question: Mole-to-mole ratios Go to <u>LearningCatalytics.com</u> Session ID =						
1)	A sample of magnesic in the sample? A) 1.63 x 10 ²⁰ atoms	um hydroxide has a mass of 15.8 mg. How many <u>atoms</u> are D) 8 x 10 ²⁰ atoms				
	B) 2 x 10 ²⁰ atoms	E) 4.89 x 10 ²⁰ atoms				
	C) 8.16 x 10 ²⁰ atoms	F) 5 x 10 ²⁰ atoms				

See work shown on next slide...

Work shown for question from previous slide...

1) A sample of magnesium hydroxide has a mass of 15.8 mg. How many <u>atoms</u> are in the sample?

Answer:

There are 5 atoms in each Mg(OH)₂

Flowchart: mg Mg(OH)₂ \rightarrow g Mg(OH)₂ \rightarrow moles Mg(OH)₂ \rightarrow # Mg(OH)₂ \rightarrow # atoms

Could also have done:

mg Mg(OH)₂ \rightarrow g Mg(OH)₂ \rightarrow moles Mg(OH)₂ \rightarrow moles atom \rightarrow # atoms

Common error from previous slide:

The last conversion factor *appears* to get us from $Mg(OH)_2 \rightarrow atoms$, but when we use a conversion factor with "mole", the numerator and the denominator <u>must</u> have the same units.

For example:

Need to make changes in how you study for CHEM 4?

Here's our checklist of key behaviors that lead to success in CHEM 4:

- ✓ Study efficiently with a focus on the homework:
 - (1) do the assigned reading, then (2) attend lecture, then (3) review the lecture slides or video. You should then be ready to do the homework.
 - ✓ If you do (1) (3) and start the required homework and have trouble, then put aside the homework and redo (1) and (3). Then try the optional homework.
 - ✓ If you still have trouble, put the homework aside and come to my office hours.
 - Remember is it okay if the homework is late, the most important thing is that you are really understanding the homework.
- ✓ Get help when needed:
 - Put together a weekly study group.
 - ✓ Jeff's office hours: MWF 9 9:30 am and 11 11:30 am; and by appointment.
 - ✓ PAL office hours: link is on our CHEM 4 website.
- ✓ Complete all of the practice exams.
- ✓ Visit our CHEM 4 website regularly: <u>tinyurl.com/SacStateChem4</u>

CHEM 4 lecture

Friday – November 13, 2020

Sec 6.6 - 6.7 Mass Percent

Reading clicker question: Mass percent (Sec 6.6 - 6.7) Go to LearningCatalytics.com Session ID =

2) Which of the following correctly shows how to calculate the *mass percent* of element X in a compound based on the chemical formula?

 $\left(\frac{\text{mass of element X in 1 mole of compound}}{\text{mass of the sample of the compound}}\right) \times 100\%$

B) $\left(\frac{\text{mass of element X in 1 mole of compound}}{\text{mass of 1 mol of compound}}\right) \times 100\%$

C

$$\left(\frac{\text{mass of X in a sample of the compound}}{\text{mass of the sample of the compound}}\right) \times 100\%$$

 $\left(\frac{\text{mass of X in a sample of the compound}}{\text{mass of 1 mol of compound}}\right) \ge 100\%$

This is also a formula for finding mass percent, but is used when you have experimental data instead of the chemical formula. **Sample calculation:** Determining the mass % of an element when we know the formula of the compound.

Ex: Determine the mass % of silver in silver sulfide.

Answer: Formula = Ag_2S

Mass % Ag = $\left(\frac{\text{mass of Ag in 1 mole of Ag}_2S}{\text{mass of 1 mol of Ag}_2S}\right) \times 100\%$

Mass % is very useful because <u>any</u> size sample of Ag₂S is 87.05% Ag

Sample calculation: Using the mass %

Ex: How much Ag₂S would you need if you wanted to isolate 200.0 g of Ag?

Remember, we just saw that Ag_2S is always 87.05% Ag. Because "%" also means "per 100" we can use mass % as a conversion factor:

Rewrite **87.05% Ag** as:

87.05 g Ag 100 g Ag₂S

Answer:

$$(200.0 \text{ g of Ag}) \left(\frac{100 \text{ g Ag}_2 \text{S}}{87.05 \text{ g Ag}} \right) = 229.8 \text{ g Ag}_2 \text{S}$$

$$\frac{\text{Keep 4sf}}{4\text{sf}}$$

[This answer makes sense... the mass of the whole sample should be greater than the mass of just the silver.]

Clicker question: Determining mass % Go to LearningCatalytics.com Session ID =

3) Calculate the mass % of O in a 32.0 g sample of carbonic acid.

A) 61.02% O	D)	72.28% 0
B) 81.90% O	E)	77.39% O
C) 13.20% O	F)	45.26% O

Answer:

Formula =
$$H_2CO_3$$
 (aq)

Calculation: Mass % of O =
$$\frac{3(16.00)}{2(1.008) + 1(12.01) + 3(16.00)}$$
 x 100% = 77.39% O

Notes:

- The mass of the sample (32.0 g) doesn't matter.
- Could also find mass % of H = 3.250% and mass % of C = 19.36%
- All of the mass %'s add up to 100%

Clicker question: Using mass % Go to LearningCatalytics.com Session ID =

 4) How many grams of C is present in a sample of H₂CO₃ that has 16.0 g of O? [Remember we just saw that H₂CO₃ is 77.39% O, 3.250% H, and 19.36% C. Consider writing these %'s out at "per 100 g" conversion factors.]

A) 31.9 g C	D)	4.00 g C
B) 8.02 g C	E)	16.0 g C
C) 6.15 g C	F)	24.3 g C

Method #2: $(16.0 \text{ g O}) \left(\frac{1 \text{ mol O}}{16.00 \text{ g O}}\right) \left(\frac{1 \text{ mol H}_2\text{CO}_3}{3 \text{ mol O}}\right) \left(\frac{1 \text{ mol C}}{1 \text{ mol H}_2\text{CO}_3}\right) \left(\frac{12.01 \text{ g C}}{1 \text{ mol C}}\right) = 4.00 \text{ g C}$

Clicker question: Conceptual understanding of mass % Go to LearningCatalytics.com Session ID =

- 5) Which of the following has the highest mass percent of copper? See if you can determine the answer without doing any calculations.
 - A) 100-g sample of $Cu(NO_3)_2$
 - B) 75-g sample of CuO
 - C) 200-g sample of $CuCO_3$
 - D) 25-g sample of CuS

The sample masses don't matter. Because our calculations for mass % would each have 1 x Cu in the numerator, if we want the highest mass % of Cu, we want the compound with the smallest molar mass.

Clicker question: Determining the mass % from experimental data Go to LearningCatalytics.com Session ID =

6) Aspirin contains only C, H and O. A 500. mg aspirin is found to have 299.5 mg of C, 22.5 mg of H. What is the mass % of O in aspirin?

Mass % of X = $\left(\frac{\text{mass of X in a sample of the compound}}{\text{mass of the sample of the compound}}\right) \times 100\%$

A) 36% O	D) 35.6% O	
B) 64.4% O	E) 59.9% O	
C) 60% O	F) 40.10% O	

Answer: We weren't given the formula for aspirin, but we do have experimental data. Taking the total mass of the aspirin and subtracting the masses of C and H will give us the mass of O. If all the masses have the same units, then we can use any unit and we don't have to convert them to g.

```
Mass O = 500. mg aspirin – 299.5 mg C – 22.5 mg H = 178 mg
```

Mass % of O =
$$\frac{178 \text{ mg O}}{500. \text{ mg aspirin}} \times 100\% = 35.6\% \text{ O}$$